Eliminating the dication-induced intersample chemical-shift variations for NMR-based biofluid metabonomic analysis.
نویسندگان
چکیده
NMR-based urinary metabonomic analysis is an essential aspect of systems biology for understanding mammalian physiology and pathophysiology though intersample chemical-shift variations can cause serious problems. Here, we report two optimized and validated methods to eliminate such variations resulting from intersample differences in pH and dication concentration. We found that the Ca(2+) concentration was 7.41 ± 3.48, 1.03 ± 0.34 and 0.87 ± 0.52 mM whereas the Mg(2+) concentration was 3.02 ± 1.41, 2.65 ± 1.20 and 0.80 ± 0.59 mM in rat, mouse and human urine samples, respectively; urinary Ca-EDTA, Mg-EDTA and free EDTA had spin-lattice relaxation time values (600.13 MHz) of 0.38, 0.41 and 0.55 s, respectively. We also found that the combined treatments with potassium fluoride, phosphate buffer and a small amount of K(3)EDTA eliminated intersample chemical-shift variations for all metabolites. EDTA treatment followed with phosphate buffer also achieved similar results although resonances from EDTA and its complexes obscured some metabolite signals. We systematically optimized the amount of additives for rat, mouse and human urine samples taking into consideration the pH control, signal-to-noise ratio and intersample uniformity for metabolite chemical-shifts. Based on thorough validation, we established some optimized procedures for rat, mouse and human urine, respectively. By eliminating both pH and dication effects, these methods enable the reduction of intersample chemical-shift variations to 1.5 Hz for all metabolites. The methods will offer ensured data quality for high-throughput, especially robotic urinary metabonomics studies with no need for peak alignments or corrections.
منابع مشابه
Evaluation of the orthogonal projection on latent structure model limitations caused by chemical shift variability and improved visualization of biomarker changes in 1H NMR spectroscopic metabonomic studies.
In general, applications of metabonomics using biofluid NMR spectroscopic analysis for probing abnormal biochemical profiles in disease or due to toxicity have all relied on the use of chemometric techniques for sample classification. However, the well-known variability of some chemical shifts in 1H NMR spectra of biofluids due to environmental differences such as pH variation, when coupled wit...
متن کاملAn optimized buffer system for NMR-based urinary metabonomics with effective pH control, chemical shift consistency and dilution minimization.
NMR-based metabonomics has been widely employed to understand the stressor-induced perturbations to mammalian metabolism. However, inter-sample chemical shift variations for metabolites remain an outstanding problem for effective data mining. In this work, we systematically investigated the effects of pH and ionic strength on the chemical shifts for a mixture of 9 urinary metabolites. We found ...
متن کاملMetabonomic analysis of HIV-infected biofluids.
Monitoring the progression of HIV infection to full-blown acquired immune deficiency syndrome (AIDS) and assessing responses to treatment will benefit greatly from the identification of novel biological markers especially since existing clinical indicators of disease are not infallible. Nuclear magnetic resonance spectroscopy (NMR) and mass spectrometry (MS) are powerful methodologies used in m...
متن کاملAn optimised sample preparation method for NMR-based faecal metabonomic analysis.
Faecal metabonomic NMR analysis plays an essential role in investigating the interactions between mammalian metabolism and symbiotic gut microbiota. However, the faecal metabolite extraction method remains to be optimised and standardised to take into consideration signal-to-noise ratios, pH and chemical shift consistency. In the current investigation, we compared extraction consistency of thre...
متن کاملThe Consortium for Metabonomic Toxicology (COMET): aims, activities and achievements.
The utility of metabonomics in the evaluation of xenobiotic toxicity has been comprehensively assessed by the Consortium for Metabonomic Toxicology (COMET), formed between five major pharmaceutical companies and Imperial College London, UK. The main objectives were to assess methodologies, to generate a metabonomic database using (1)H nuclear magnetic resonance (NMR) spectroscopy of rodent urin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Analyst
دوره 137 18 شماره
صفحات -
تاریخ انتشار 2012